PRELIMINARY VERSION Finite elements for the Laplace-Beltrami equation on parametric surfaces

نویسندگان

  • Michael S. Floater
  • Atgeirr F. Rasmussen
  • Nils H. Risebro
چکیده

In this paper we make a thorough study of the use of the finite element method to numerically compute harmonic maps from parametric surfaces to the plane. There are essentially two choices to be made in the FE method: (1) which elements and (2) which quadrature. We show that by using linear elements and point-based linear quadrature the method reduces to the cotangent method studied by Dziuk, Polthier and others. We are thus able to give a new convergence analysis of this method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces

We present an adaptive finite element method for approximating solutions to the Laplace-Beltrami equation on surfaces in R3 which may be implicitly represented as level sets of smooth functions. Residual-type a posteriori error bounds which show that the error may be split into a “residual part” and a “geometric part” are established. In addition, implementation issues are discussed and several...

متن کامل

Superconvergence and Gradient Recovery of Linear Finite Elements for the Laplace-Beltrami Operator on General Surfaces

Superconvergence results and several gradient recovery methods of finite element methods in flat spaces are generalized to the surface linear finite element method for the LaplaceBeltrami equation on general surfaces with mildly structured triangular meshes. For a large class of practically useful grids, the surface linear finite element solution is proven to be superclose to an interpolant of ...

متن کامل

A Discrete Laplace-Beltrami Operator for Simplicial Surfaces

We define a discrete Laplace-Beltrami operator for simplicial surfaces (Definition 16). It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called “cotan formula”) except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new ...

متن کامل

Analysis of the Finite Element Method for the Laplace–Beltrami Equation on Surfaces with Regions of High Curvature Using Graded Meshes

We derive error estimates for the piecewise linear finite element approximation of the Laplace–Beltrami operator on a bounded, orientable, C3, surface without boundary on general shape regular meshes. As an application, we consider a problem where the domain is split into two regions: one which has relatively high curvature and one that has low curvature. Using a graded mesh we prove error esti...

متن کامل

Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces

A recent paper of Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281–354] showed that a large class of mixed finite element methods can be formulated naturally on Hilbert complexes, where using a Galerkin-like approach, one solves a variational problem on a finite-dimensional subcomplex. In a seemingly unrelated research direction, Dziuk [Lecture Notes in Math., vol. 1357 (1988), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006